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ABSTRACT 

A small scale ground effect test rig was used to study the ground plane flow field 

generated by a STOVL aircraft in hover. The objective of the research was to support 

NASA-Ames Research Center planning for the Large Scale Powered Model (LSPM) test 

for  the   ARPA-sponsored   ASTOVL   program.   Specifically,   small   scale   oil   flow 

visualization studies were conducted to make a relative assessment of the aerodynamic 

interference of a proposed strut configuration and a wall configuration on the ground 

plane stagnation line. A simplified flat plate model representative of a generic jet-powered 

STOVL aircraft was used to simulate the LSPM. Cold air jets were used to simulate both 

the lift fan and the twin rear engines. Nozzle Pressure Ratios were used that closely 

represented those used on the LSPM tests. The flow visualization data clearly identified a 

shift in the stagnation line location for both the strut and the wall configuration. 

Considering  the  experimental uncertainty,  it was  concluded  that  either the  strut 

configuration or the wall configuration caused only a minor aerodynamic interference. 
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I.   INTRODUCTION 

A.       BACKGROUND 

For the past few years, the Department of Defense (DoD) has been investigating 

the possibility of providing the next generation of air superiority fighter with a Short 

Take-Off and Vertical Landing (STOVL) capability. These studies have led to the 

formulation and funding of the Advanced Short Take-Off and Vertical Landing 

(ASTOVL) aircraft program. Therefore, the Advanced Research Project Agency (ARPA) 

has invited the Lockheed Advanced Development Company (LADC), McDonnell 

Douglas Company (MD), The Boeing Company, and Northrop-Grumman (NG) 

corporation to submit design proposals [Ref. 1]. In March 1993, contracts were awarded 

to LADC and MD for the technology validation phase. Boeing and NG are also 

participating in the technology validation phase. 

NASA Ames will test the Large Scale Powered Models (LSPM) in their 80' x 120' 

wind tunnel for the forward flight phase and the hover phase of the flight. Additional 

hover tests will be conducted at NASA's Outdoor Aerodynamic Research Facility 

(OARF). The prototype will be supported by struts to allow testing of the ground effects 

of the ASTOVL in hover. The placement of the struts is of great importance. It is desired 

to place the struts where they will not interfere with the flow of the test model in hover. 

A small scale visualization of the flow field on the ground plane can give a quick, 

qualitative comparison of the model flowfield with the struts and without the struts. 

These data can confirm a favorable placement of the struts to minimize the aerodynamic 

interference. 

NASA is considering the construction of walls to partially enclose the OARF for 

noise abatement reasons. Economy dictates that a smaller wall closer to the model test 

area will reduce costs. No money is saved if the wall interferes with the test and produces 

questionable data. It is reasonable to expect that obstructions such as the wall will have 



no effect if placed far enough from the test model. Testing conducted using a small-scale 

flow visualization test rig can yield data to determine how close the wall can be placed to 

the LSPM so it does not interfere with the ground plane flow field. 

B.       JET-INDUCED GROUND EFFECTS 

As discussed, for example, by Platzer and Margason [Ref. 2], depending on the 

height of the aircraft above the ground, the aircraft will produce a fountain effect that can 

increase the net lift of the aircraft or produce an entrainment of air that can lead to a 

suckdown effect reducing the net lift on the aircraft. Therefore, unlike conventional 

aircraft, the STOVL aircraft can actually lose lift due to the ground effects. 

The ground effects for a STOVL aircraft can be seen in Figure 1. The main 

component of lift is provided by the exhaust of the front and rear nozzles. The fountain 

effect is produced when the impinging exhausts of the two engines interact on the ground 
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Figure 1 Row Field for STOVL Aircraft Hovering in Ground Effect 



and the resulting flow is diverted up, causing additional lift on the aircraft. A reduction in 

lift is produced when the airflow is entrained by the exhaust jets inducing air flow on the 

bottom of the wing and aircraft. The fountain effect is more prevalent at the higher 

heights of hover and the suckdown is more prevalent at the lower heights. It is important 

to determine at all heights if there is any interference from the struts that could change the 

fountain effect or the suckdown effect on the test model. The effect of the wall on the 

ground-plane flow field must also be determined prior to the construction of the wall for 

any testing at the OARF. 

C.       SCOPE OF THESIS 

The aim of this thesis is to support NASA Ames Research Center's planning for 

LSPM hover tests for the ARPA sponsored Common Affordable Lightweight Fighter 

(CALF) program. Specifically, it was aimed at conducting small-scale flow visualization 

studies in the Naval Postgraduate School (NPS) Monterey, CA ground-effect test rig on a 

simplified flat-plate configuration representative of a generic jet-powered STOVL aircraft 

in hover. The support-strut and wall interference on jet-induced ground effects was 

determined by the oil-flow technique on the ground-plane. 

The general procedure followed here consists of comparing the ground-flow oil 

pattern and stagnation line produced by the model without the walls and the struts 

(baseline model) to those produced by the model with the struts and those with the struts 

and walls. The strut location was chosen based on the proposed strut location for the 

NASA Ames OARF tests. The wall location was chosen primarily because of the 

dimension of the ground-effect test rig. This distance was very close to the closest 

proposed wall location at the OARF A total of seven ground-plane heights and three 

nozzle thrust ratios were used to cover the anticipated operating conditions in the OARF. 





II. EXPERIMENTAL APPARATUS 

A.       MODEL 

1.        Scaling 

The major consideration for the model sizing was the relative size of the model's 

nozzles to the LSPM's nozzles [Ref. 3]. An effective diameter was computed from the 

exit area of the forward nozzle of the LSPM. The forward nozzle of the model has a 

diameter of one inch and the scaling factor was determined from the ratio of the effective 

diameter to the model's forward nozzle diameter. From that ratio, each of the two rear 

nozzles of the model was determined to be 0.39 inches in diameter. The model and nozzle 

configurations are shown in Figure 2. An appropriately scaled generic model was 

installed with the nozzle setup. 

Figure 2 Nozzle and Model Configuration 



2. Nozzles 

The nozzles used were a simple converging passage fit flush to the model. The 

diameters were chosen to represent the exit area for the given scaling factor. The nozzles 

were fitted to the scale model at the appropriate distance corresponding to the scaling 

factor and attached to the two-inch feed pipes that supplied the high-pressure air. An 

access was provided at the entrance of each nozzle configuration to mount a pitot tube for 

pressure measurement. The nozzle designs are shown in Figure 3. 

3. Model Construction 

A generic model was used for the aircraft model to avoid any proprietary design 

information. The model design can be seen in Figure 2. Because the nozzle sizing 

determines the overall size of the model and LADC and MD used two different nozzle 

sizes, the models were similar in shape but different in size. The model was constructed 

from Plexiglas with flat edges. It was determined that the flat edges would have little 

effect on the ground plane flow [Ref. 3]. 

B.       SUPPLY AIR AND TEST RIG 

The air was supplied by the existing facilities at the Naval Postgraduate School 

Gas Dynamics Laboratory. The supply air provided up to 300 psi of air. The tests were 

carried out in the NPS ground-effect test rig used in the previous investigation [Ref. 4]. 

Two modifications were required to the test rig for this study: installing the new nozzle 

sizes on the feed pipes and fitting the new model to the nozzles. 
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Figure 3 0.39" and 1" Nozzle Design 



C. GROUND PLANE 

1. Surface Platform 

The 46-inch square wooden frame used in the previous investigation was 

adequate for the current experiment. Since the strut locations for the current model were 

different, the reverse side of the frame was used with a new sheet of aluminum to 

accommodate the new strut locations. 

2. Lift Mechanism 

The aircraft model was not movable and to change the relative height of the model 

aircraft to the ground plane, the height of the ground-plane was changed. The ground 

plane was placed on a hydraulic lift to change the relative heights of the ground plane. 

The existing facility was improved for this study. A new hydraulic lift was purchased to 

replace the previous hydraulic lift on loan. The new lift is of the same precision as the 

previous lift and did not increase or decrease the accuracy of the measurements. The 

ground plane was leveled to the exit nozzle plane. 

D. STRUTS 

NASA originally was going to construct a crane and support system for the 

LSPM. This would have an advantage of not interfering with the ground-plane flow. The 

associated cost and time penalties made the strut configuration a more attractive 

alternative. The struts in the 80' x 120' wind tunnel could be used in the OARF. The struts 

are arranged in a triangular configuration with two main mounts and a nose support. A 

similar configuration was used in the previous study [ Ref. 4]. 

The strut size and placement was scaled for the present model configuration, 

shown in Figure 4. The struts in this study are wooden dowels. The main struts have a 

diameter of 1.33 inches with a separation of 26.67 inches. The nose support strut is a 



wooden dowel of diameter 1.00 inch with a separation from the main strut centerline of 

16.67 inches. 

Figure 4 Strut Position Configuration 

E.       WALLS 

The testing of an ASTOVL aircraft in hover is a noisy undertaking. The engines 

are at or near maximum thrust conditions for long periods of time. Due to safety and 

environmental concerns NASA is studying the idea of placing noise abatement walls 

around the OARF. To minimize costs, walls will be placed only on the most critical sides 

of the OARF. The sides considered for the walls corresponded to the sides of the OARF 

where the nose and right side of the LSPM will be located (See Figure 5). Further 

reduction in cost can be realized by placing a smaller wall closer to the OARF. But the 

placement of the wall cannot be too close or this will interfere with the ground-plane 

flow. 



Of the many wall configurations which were proposed, the configuration with the 

wall closest to the model was tested because, if any effect would be detected, it would be 

with this configuration. Wall modeling was accomplished by placing a large piece of one 

inch plywood adjacent to the left side of the ground-plane test platform. The placement of 

the wall was on the left side of the model, even though the NASA proposed wall was on 

the right side of the LSPM. Due to the supply air lines, it was a difficult task to place the 

wall on the right side of the model. The wall near the nose section was modeled by 

placing two office dividers adjacent to the ground plane test section. This arrangement 

allowed the wall to be tested at all the anticipated heights of the LSPM. The walls were 

chosen to model the proposed noise abatement walls and for ease of assembling the wall 

configuration. 

10 



Figure 5 Proposed Wall Configuration at NASA's OARF 

11 



12 



in.      EXPERIMENTAL PROCEDURE 

A. OIL-DOT TECHNIQUE 

The general procedure for obtaining the ground-plane oil-flow visualization was 

to apply the oil to the ground plane using a wooden template, adjust the height of the 

ground plane, and turn the jets on for approximately five minutes. Photographs and 

measurements could be taken and the process could be repeated after cleaning the ground 

plane. For more details see Ref. 4. 

1. Composition Of Oil 

The composition of the oil was of vital importance for good results. Earlier 

research [Ref. 4] suggested mixing Pennzoil 10W-40 with STP oil treatment. Some test 

runs were conducted to confirm that the 5:1 oil to STP mixture was ideal. Measurements 

and photographs were improved by using color pigments. The amount of pigment added 

was subjective and not measured. Four colors (rocket red, aurora pink, blaze orange, and 

sarurn yellow) were provided by the Day-Glo Color Corporation of Cleveland, Ohio. 

2. Application 

The oil-dot technique was chosen over a brush-type application to study the local 

surface streamline pattern. For consistency and ease of applying the oil dots, a wooden 

template was constructed. The template consisted of a matrix of 17 x 17 holes with a 

diameter of 0.25". Additional oil drops could be applied manually when it was deemed 

necessary. 

B. NOZZLE THRUST RATIO 

1.        Pressure Ratio 

Three nozzle thrust ratios (NTR's) were tested during this investigation: 0.92, 1.5, 

and 4.9. The nozzle thrust ratio is the ratio of the thrust produced from the rear nozzles to 

the thrust produced from the front nozzle. The thrust ratios were provided by NASA 

Ames. Using NASA Ames methods [See Appendix A], the nozzle thrust ratios were 

13 



converted to nozzle pressure ratios (NPR's) so that pressure gauges could be used to set 

the proper NTR. 

2.        Setting The Pressure Ratio 

Pressure was controlled by an independent pressure regulator valve attached to 

each of the feed pipes that were connected to the nozzles. Inside each nozzle was a pitot 

tube. The pitot tubes were connected to large pressure gauges with a precision of ±0.5 

psi. The atmospheric pressure was obtained every day so the proper NPR's could be set. 

Once the NPR's were set, periodic checks of the atmospheric pressure and the nozzle 

pressures were conducted. 

C. GROUND-PLANE HEIGHT 

1. Specification 

The preferred manner of referencing the ground-plane height is to measure the 

height of the model above the ground plane and divide it by the equivalent diameter of 

the total exit area (h/De) of the nozzles. The nondimensional heights that were measured 

in the NPS Ground Effect Test Rig were 1,2,4,6,8,10,15. These were chosen to coincide 

with the expected test height in the OARF and earlier research. 

2. Setting The Height 

Before any runs were conducted, the ground plane was leveled by placing shims 

under the hydraulic lift. Several measurements were taken of the ground plane and the 

nozzles. These measurements were taken at different heights to ensure they were level as 

the heights were changed. When the ground plane was adjusted for the proper position of 

the model in relation to the struts, C-clamps were applied to protect against large 

movements. Periodic checks to ensure proper alignment were conducted. 

D. PHOTOGRAPHY 

Photographs were taken of every run to record the flow visualization effects of 

each run. The camera used was a Minolta 5000i with a 50/1.4 lens. Initially, many 
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variations of lighting and exposure times were tried. After many different trials it was 

determined that photos taken in black light with an F-stop of 5.6 and an exposure time of 

two seconds gave satisfactory results. Black and White ASA 400 film was used. 

The camera was mounted on a tripod to capture the entire flow field in the 

photograph. The tripod was also necessary because of the long exposure time. Two new 

fluorescent blacklights were purchased to improve the lighting of the flow field. This 

inexpensive improvement increased the quality of the photographs. One portable 

blacklight was also used to increase the amount of light. 

E.       MEASUREMENTS 

The primary record of the test results was the photographs. In order to quantify 

the results for comparison, measurements of the stagnation line were made. The 

stagnation line is the loci of points where the ground-plane flow velocities from the front 

and rear nozzles cancel each other, leaving a buildup of oil. Usually this buildup is small 

allowing for accurate measurements. In an extreme case, a stagnation line of 

approximately 0.15 inches wide was observed. Determining the exact stagnation line was 

somewhat subjective, decreasing the precision of the measurement. 

Due to the large range of NTR's and heights used, the stagnation line varied in its 

shape. At some lower heights, a discontinuous line was observed (See Figure 6). These 

extra areas of interest were recorded. Depending on the pressure ratio and height, the 

stagnation line was observed to "bend" forward or "bend" backwards. The method used to 

locate the stagnation line was to measure the distance from the stagnation line to the 

centerline of the two main mounts. Measurements were taken at three points; the center of 

the stagnation line, and the two points of the stagnation line that coincided with the 

wingtip extensions (See Figure 6). 

15 



MEASUREMENTS 
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Figure 6 Discontinuous Stagnation Line and Measurements of Ground Stagnation 
Line 
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IV.      RESULTS AND DISCUSSION 

A.       EXPERIMENTAL ACCURACY 

1. Measurements 

The ground-plane measurements of the stagnation line were made using a steel 

ruler with graduations every 0.02 inches. The stagnation line was in all cases thicker than 

0.02 inches, in some cases as thick as 0.15 inches. The determination of the location of 

the stagnation line in these cases was done in a subjective manner. The measurement 

uncertainty was estimated to be ±0.05 inches. 

A complete uncertainty analysis would consist of numerous runs and determining 

some statistical error for each test condition. Due to time constraints, only three runs were 

conducted for one test condition to check for repeatability. In order to quantify the 

location of the stagnation line, measurements were taken at three points on the line. All 

distances were measured from the stagnation line to the centerline of the two main struts. 

One measurement specified the stagnation point (i.e. center point of the stagnation line). 

The other two measurements represented the points on the stagnation line that coincided 

with the intersection of the wingtip extension lines (See Figure 6). When graphing, these 

distances were transformed to represent the corresponding distances from the nose of the 

model to the stagnation line. 

2. Test Conditions 

It is recognized that reproducing the NTR's, heights, and other parameters exactly 

from day-to-day was not possible. The test conditions were kept as uniform as possible 

between the runs for different configurations to minimize errors as much as possible. 

17 



B.       REPEATABILITY 

To assess repeatability of the test data, three repeat runs were conducted. The 

configuration chosen corresponded to NTR = 0.92, with struts and no walls. The 

distances were averaged together and the individual runs were compared to the mean 

value. 

1.        Stagnation Point Measurements 

The results of the three test runs and the mean are shown in Figure 7. The largest 

difference from the mean was 0.15 inches and occurred at h/De = 10. The overall average 

difference from the mean was 0.05 inches. 

Repectdsility - Center 

Figure 7 Repeatability of Stagnation Point Measurements 

2.        Left Wingtip Extension Line and Stagnation Line Intersection 

Due to the presence of a small asymmetry in the flow pattern, the left and right 

measurements will be discussed separately. The results of the three runs and their mean 

are shown in Figure 8. The largest difference from the mean, which occurred at h/De = 2, 

was 0.30 inches. The overall average difference from the mean was 0.12 inches. 

18 



Repedctoility-Left 

Figure 8 Repeatability  of Left Wingtip Extension Line  and  Stagnation Line 
Intersection 

3.        Right Wingtip Extension Line and Stagnation Line Intersection 

Figure 9 shows the results of the three runs and their mean. At h/De = 2, the 

largest difference from the mean was recorded. This difference was 0.42 inches. The 

overall average difference from the mean was 0.13 inches. 
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Repectc±3iiity- Right 

Figure 9 Repeatability of Right Wingtip Extension Line and Stagnation Line 
Intersection 

C.        GROUND - PLANE FLOW FIELD VISUALIZATION 

The ground-plane flow-field visualization was photographed and recorded. The 

changes noted in the stagnation line were due to the different NTR's used and the 

changing height of the model. The most dramatic shift was due to a large variation of the 

NTR's. At the lowest NTR (= 0.92), the stagnation line was convex with respect to the 

nose of the model for the lower heights tested (Figure 10). With an NTR = 1.5, the 

stagnation line was relatively straight and perpendicular to the longitudinal axis of the 

aircraft for h/D =4.0 (Figure 11). At the highest NPR (= 4.9), the stagnation line was 

concave with respect to the nose of the model for all heights (Figure 12). 

20 
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Figure 10        Convex Stagnation Line (NTR = 0.92 h/De = 4) 
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Figure 11       Straight Stagnation Line (NTR = 1.5 h/De = 4) 
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Figure 12       Concave Stagnation Line (NTR = 4.9 h/De =10) 

The stagnation line changed shape with the changing height of the model. The 

most visible change was the appearance of distinct comers as seen in Figure 13. These 

were recorded at lower heights. At the higher heights, the two small jets in the aft section 

of the model effectively behave like a single jet before impingement and their presence 

does not individually affect the stagnation line. At the lower heights, however, the 

individual effect of the two small aft jets is felt on the stagnation line. 



Figure 13 Additional Stagnation Points (NTR = 4.9 h/De = 4) 

D.        STRUT VS. NO STRUTS 

The results of the stagnation line measurements for the configuration with the 

struts were compared to those for the configuration without the struts (baseline model). 

There was a shift in the stagnation line that seemed to be dependent on the NTR. An NTR 

less than unity (0.92) produced a forward shift and NTR's greater than unity (1.5 and 4.9) 

produced an aft shift of the stagnation line. 

1.        Stagnation Point Location 

In some cases, the stagnation point was large and determining its exact location 

was difficult at best. The stagnation point could be as large as 1 inch in diameter (See 

Figure 14). To estimate where the stagnation point was, the stagnation lines were 

"followed" back to the center to give a better indication of the stagnation point. An NTR 

= 1.5 gave the least variation in the stagnation line and an NTR = 4.9 gave the largest 

shift in the stagnation line. 
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Figure 14       Large Stagnation Point (NTR = 4.9 h/De =15) 

a. NTR = 0.92 

The stagnation point shifted slightly forward with the addition of the 

struts. The largest shift measured was at h/De = 6 and was 0.17 inches. The average 

brward shift was 0.08 inches. Figure 15 shows these results.  
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Figure 15       Stagnation Point Location for NTR = 0.92 
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b.NTR = L5 

The results are shown in Figure 16. At h/De =10, the largest shift of 0.38 

inches was recorded. The average shift of the stagnation line with the addition of the 

struts was aft by 0.12 inches. 

c. NTR = 4.9 

The shift in the stagnation point with the struts in place was the largest for 

NTR = 4.9. The average shift was 0.18 inches. The largest shift occurred at h/De = 1 and 

was 0.28 inches and can be seen in Figure 17. 

2.        Wingtip Extension and Stagnation Line Intersections 

The shifts in the left and right intersections of the wingtip extension lines with the 

stagnation  line  were  not  equal   due   to    a   small   asymmetry   condition   noted 
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Figure 16       Stagnation Point Location for NTR =1.5 
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Struts vs No Struts - Center - NTR = 4.9 
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Figure 17       Stagnation Point Location for NTR = 4.9 

throughout this experiment. For more information on the asymmetry see Ref. 4. The 

average shift of the intersection points on the stagnation line due to the struts was 

measurable but was less than the experimental uncertainty. 

a. NTR = 0.92 

As with the stagnation point at NTR = 0.92, the intersection of the wingtip 

extension line and the stagnation lines shifted forward with the addition of the struts. The 

left intersection shifted an average of 0.12 inches and the right intersection shifted an 

average of 0.18 inches. The maximum shifts occurred at h/De = 6 and 2, respectively, and 

are shown in Figures 18 and 19. These maximum values were 0.26 inches and 0.42 

inches, respectively. 
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Strut vs No Strut - Left Side - NT R = 0.92 
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Figure 18       Wingtip Extension and Stagnation Line Intersection Distance for NTR; 
0.92 (Left Side) 
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Figure 19       Wingtip Extension and Stagnation Line Intersection Distance for NTR 
0.92 (Right Side) 
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b. NTR = 1.5 

There was an aft shift in both the right and the left intersections with the 

struts present. The average shift was 0.22 inches for the left and 0.07 inches for the right. 

The results are shown in Figures 20 and 21. The largest shift measured was 0.59 inches 

for the left and 0.34 inches for the right intersection, both occurring at h/De = 10. 
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Figure 20       Wingtip Extension and Stagnation Line Intersection Distance for NTR = 
1.5 (Left Side) 

c. NTR =4.9 

The intersections of the wingtip extension lines with the stagnation line 

showed the largest average shift with NTR = 4.9. This average shift was 0.31 inches for 

the left side and 0.10 inches for the right side. The largest shift was 0.75 inches for both 

the right and left intersections. These shifts occurred at h/De = 1 and 15 respectively. The 

results are plotted in Figure 22 and Figure 23 for the left and right intersections, 

respectively. 

28 



1 

0.95 

a 0.9 

I0-85 

1   0.8 

0.75 

0.7 

Struts vs No Struts-Ri^it Side-NTR = 1.5 

8 

h/De 

10 12 

STRUTS 

BASELINE 

14 16 

Figure 21       Wingtip Extension and Stagnation Line Intersection Distance for NTR 
1.5 (Right Side) 
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Figure 22       Wingtip Extension and Stagnation Line Intersection Distance for NTR: 
4.9 (Left Side) 
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Struts vs No Struts - Rigfit Side - NT R = 4.9 
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Figure 23       Wingtip Extension and Stagnation Line Intersection Distance for NTR 
4.9 (Right Side) 

E.       WALL VS. NO WALL 

The wall configuration consisted of walls on two sides of the test rig and the struts 

described earlier. The measurements were compared to the baseline configuration. 

Similar to the strut situation, the shift in the stagnation line was different depending on 

the NTR. For an NTR less than unity (0.92), the presence of the walls shifted the 

stagnation line forward and for NTR's greater than unity (1.5 and 4.9) it shifted the 

stagnation line aft. 

1.        Stagnation Point Location 

The measurement of the stagnation point had the same difficulties as in the 

previous configuration. The same general trends were noted while comparing the wall 

configuration to the baseline configuration. 
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a. NTR = 0.92 

The stagnation point shifted aft with the addition of the walls. The largest 

error measured was at h/De = 6 and was 0.40 inches. The average aft shift was 0.03 

inches. Figure 24 displays the results. 
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Figure 24       Stagnation Point Location for NTR = 0.92 

b. NTR = 1.5 

The results are shown in Figure 25. At h/De = 4, the largest error of 0.23 

inches was recorded. The average forward shift of the stagnation line with the addition of 

the walls was 0.06 inches. 

c. NTR = 4.9 

The shift in the stagnation point with the walls in place was the largest for 

NTR = 4.9. The average shift was 0.21 inches. The largest shift occurred at h/De = 6 and 

was 0.72 inches and can be seen in Figure 26. 
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Figure 25       Stagnation Point Location for NTR =1.5 
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Figure 26       Stagnation Point Location for NTR = 4.9 
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2.        Wingtip Extension Line and Stagnation Line Intersections 

The asymmetric situation observed in the strut configuration was also present for 

the wall configuration. The larger shifts in the intersections were, in general, observed for 

the larger NTR's. 

a. NTR = 0.92 

As with the stagnation point at NTR = 0.92, the intersection of the wingtip 

extension lines and the stagnation line shifted forward with the addition of the walls. The 

left intersection shifted an average of 0.24 inches and the right shifted an average of 0.07 

inches. The maximum shifts occurred at h/De = 6 and 15 and were 0.55 inches and 0.46 

inches, respectively. The plots are shown in Figure 27 and 28. 
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Figure 27       Wingtip Extension and Stagnation Line Intersection Distance for NTR; 
0.92 (Left Side) 
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Figure 28       Wingtip Extension and Stagnation Line Intersection Distance for NTR 
0.92 (Right Side) 

b. NTR = 1.5 

There was an aft shift in both the right and the left intersections with the 

walls present. The average shift was 0.13 inches for the left and a 0.14 inches for the 

right. The results are shown in Figures 29 and 30. The largest shift measured for the left 

was 1.04 inches at h/De =10, and 0.42 inches at h/De = 8 for the right. 

c. NTR =4.9 

The intersections of the wingtip extension lines with the stagnation line 

showed the largest average shift with a NTR = 4.9. This average shift was 0.30 inches for 

the left and 0.26 inches for the right. The largest shift was 1.26 inches for the left and 

1.08 inches for the right. These shifts both occurred at h/De = 6. The results are plotted in 

Figure 31 and Figure 32 for the left and right intersections, respectively 
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Figure 29       Wingtip Extension and Stagnation Line Intersection Distance for NTR 
1.5 (Left Side) 
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Figure 30       Wingtip Extension and Stagnation Line Intersection Distance for NTR 
1.5 (Right Side) 
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Figure 31       Wingtip Extension and Stagnation Line Intersection Distance for NTR 
4.9 (Right Side) 
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Figure 32       Wingtip Extension and Stagnation Line Intersection Distance for NTR 
4.9 (Right Side) 
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V.       CONCLUSION AND RECOMMENDATIONS 

A.       CONCLUSION 

At the request of NASA Ames, an investigation of strut and wall interference on 

the ground effects of a small scale model in hover was performed. This work differed 

from the earlier research in that it investigated a different model configuration and also 

studied the interference effect due to walls. An oil-flow visualization technique was used 

to record the ground-plane flow pattern including the stagnation line. 

1.        Small-Scale Model 

The presence of the wooden dowels and the walls did affect the stagnation 

streamline. The shift in the stagnation line reversed in both the wall-configuration case 

and the strut-configuration case depending on whether the NTR was above or below 

unity. In the strut-configuration case, the stagnation line shifted forward when the NTR 

was less than unity but shifted aft when the NTR was greater than unity. In the wall 

configuration, the stagnation line also shifted forward when the NTR was less than unity, 

and shifted aft when the NTR was greater than unity. As the NTR was increased the 

average shift of the stagnation line also increased. A summary of the experimental data is 

shown in Appendix B. All values presented are the average taken over all heights tested. 

Negative values indicate a shift aft and positive values indicate a shift forward. 

Although there was a definite trend noted in the stagnation streamline shift, the 

differences in the shifts were within the experimental uncertainty in most cases making a 

definite conclusion difficult. 
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B.       RECOMMENDATIONS 

1. Experimental Apparatus 

Improvements such as a more precise lift mechanism or pressure gauges could be 

used to increase accuracy. It is doubtful that these improvements, however, would 

substantially increase the accuracy of the measurements of the stagnation line. 

2. Experimental Procedure 

In order to measure the difference in the stagnation line because of the change in 

configuration, similar types of run should ideally be carried out one after another to 

minimize the difference from other factors, such as not being able to set the pressure ratio 

exactly the same as the previous runs. In order to minimize these errors, many more runs 

should be conducted to get a statistical average. However, this could not be performed in 

view of the limited time available. An alternative method would be drilling pressure taps 

in the model and measuring the change in the pressure distribution on the model. A more 

accurate way would be to set up a force balance system that would directly measure the 

forces on the model. Both of these methods come with a cost of time and money. 
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APPENDIX A 

NOZZLE PRESSURE RATIO CALCULATIONS 

T Thrust A Area 

m Mass How Rate p Density 

V Velocity M Mach Number 

Pe Exit Pressure a Speed of Sound  a = (yRt)l/2 

Pa Ambient Pressure R Gas Constant 

t Temperature 

TA^TF Thrust Aft Nozzles / Thrust Forward Nozzle (Thrust Ratio) 

THRUST EQUATION T = mV + (Pe - Pa) A 

For an underexpanded nozzle   Pe  =  Pa 

T = mV = pAV2 = (Pe/Rt) A (aM)2 = (PefRt) A ftRt) M2 = PeAvM2 = PaA7M2 

For an overexpanded nozzle 

T = PeA7M2+ (Pe-Pa)A 

Pe = 0.5283*Pa * NPR 

M = 1 (all nozzles are convergent only and therefore choked) 

Aft nozzles are overexpanded, and the Front nozzle is underexpanded therefore 

TA / TF =  (PeAA7 + (Pe - Pa) A A) / PaAF7MF
2 

where Pe = { 0.5283 * Pa * NPR}A 

39 



Additional corrections were used to modify this equation to better match the operating 

conditions of NASA's LSPM. For more information, see Ref 5. Table 1 shows the nozzle 

pressure ratios used for the corresponding nozzle thrust ratios. 

NTR NPR (Forward) NPR (Aft) 

0.92 1.31 2.21 

1.5 1.31 3.03 

4.9 1.09 3.03 

TABLE 1--Nozzle Thrust Ratios and Corresponding Nozzle Pressure Ratios. 
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APPENDIX B 

EXPERIMENTAL RESULTS 

Note 1:A11 measurements are in inches. 
Note 2:Negative values indicate Stagnation line aft of main strut centerline. 

HEIGHT 1.14 2.28 4.57 6.85 9.14 11.42 17.13 

NOSE -0.06 0.50 0.65 0.58 1.00 0.82 1.05 

LWING -0.86 -0.59 0.16 0.67 1.44 1.23 0.93 

RWING -1.14 -1.73 -0.47 0.27 1.10 0.94 0.64 

TABLE 2: NTR = 0.92 No Walls  No Struts 

HEIGHT 1.14 2.28 4.57 6.85 9.14 11.42 17.13 

NOSE -0.02 0.60 0.76 0.80 1.10 1.00 1.15 

LWING -0.70 -0.14 0.47 1.03 1.50 1.44 0.92 

RWING -1.04 -1.05 -0.12 0.62 1.18 1.14 0.86 

TABLE 3: NTR = 0.92 No Walls   Struts (Run 1) 
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HEIGHT 1.14 2.28 4.57 6.85 9.14 11.42 17.13 

NOSE -0.12 0.56 0.70 0.68 1.03 0.77 1.18 

LWING -0.88 -0.22 0.29 0.80 1.36 1.17 1.06 

RWING -1.20 -1.16 -0.36 0.35 1.06 0.91 1.06 

TABLE 4: NTR = 0.92 No Walls   Struts (Run 2) 

HEIGHT 1.14 2.28 4.57 6.85 9.14 11.42 17.13 

NOSE -0.09 0.48 0.57 0.78 1.11 0.99 1.18 

LWING -1.16 -0.63 0.03 0.95 1.47 1.41 1.19 

RWING -1.48 -1.73 -0.47 0.58 1.16 1.03 1.25 

TABLE 5: NTR = 0.92 No Walls   Struts (Run 3) 

HEIGHT 1.14 2.28 4.57 6.85 9.14 11.42 17.13 

NOSE -0.09 0.37 0.79 0.98 1.02 0.92 0.80 

LWING -1.13 -0.38 0.52 1.22 1.56 1.53 1.33 

RWING -1.26 -1.33 -0.10 0.62 0.92 1.07 0.18 

TABLE 6: NTR = 0.92 Walls  Struts 
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HEIGHT 1.14 2.28 4.57 6.85 9.14 11.42 17.13 

NOSE 0.29 0.96 1.20 1.92 1.72 1.89 2.16 

LWING 0.49 0.99 1.78 2.49 2.81 3.20 2.73 

RWING -0.10 0.68 0.84 2.36 2.62 3.00 2.66 

TABLE7:NTR=1.5 No Walls  No Struts 

HEIGHT 1.14 2.28 4.57 6.85 9.14 11.42 17.13 

NOSE 0.31 0.92 1.10 1.78 1.59 1.51 2.06 

LWING 0.44 0.87 1.64 2.31 2.31 2.61 2.80 

RWING 0.15 0.61 0.82 2.06 2.36 2.66 2.92 

TABLE8:NTR=1.5 No Walls   Struts 

HEIGHT 1.14 2.28 4.57 6.85 9.14 11.42 17.13 

NOSE 0.22 0.96 0.97 1.76 1.62 1.90 2.30 

LWING 0.37 0.85 1.46 2.48 2.72 2.16 3.51 

RWING 0.16 0.53 0.55 2.02 2.20 2.84 2.78 

TABLE9:NTR=1.5 Walls   Struts 
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HEIGHT 

NOSE 

LWING 

RWING 

1.14 

1.20 

2.65 

2.20 

2.28 

1.93 

3.76 

3.19 

4.57 

3.02 

5.05 

4.74 

6.85 

3.68 

6.44 

6.05 

9.14 

3.20 

5.60 

5.44 

11.42 

3.47 

6.65 

6.24 

17.13 

4.46 

6.72 

6.74 

TABLE 10: NTR = 4.9 No Walls  No Struts 

HEIGHT 1.14 2.28 4.57 6.85 9.14 11.42 17.13 

NOSE 0.92 1.75 3.00 3.62 3.30 3.30 4.25 

LWING 1.90 3.45 4.99 6.00 5.69 6.09 6.58 

RWING 1.66 3.18 4.92 6.14 5.75 6.28 5.99 

TABLE 11: NTR = 4.9 No Walls   Struts 

HEIGHT 1.14 2.28 4.57 6.85 9.14 11.42 17.13 

NOSE 1.01 1.61 2.55 2.96 3.45 3.77 4.16 

LWING 2.37 3.27 4.57 5.18 6.24 6.68 6.43 

RWING 1.88 2.75 4.14 4.97 5.91 6.55 6.58 

TABLE 12: NTR = 4.9 Walls   Struts 

44 



APPENDIX C 

PHOTOGRAPHIC RECORD OF TEST RUNS 

NTR = 0.92 NO WALLS NO STRUTS 

Figure 33       NTR = 0.92,   Ground-Plane Height 1.14" 
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Figure 34       NTR = 0.92,   Ground-Plane Height 2.28" 
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Figure 35       NTR = 0.92    Ground-Plane Height 4.57" 
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Figure 36       NTR = 0.92,   Ground-Plane Height 6.85" 

Figure 37       NTR = 0.92,   Ground-Plane Height 9.14" 
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Figure 38       NTR = 0.92,   Ground-Plane Height 11.42" 
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Figure 39       NTR = 0.92,   Ground-Plane Height 17.13" 
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II.       NTR = 0.92 WALLS  STRUTS 

Figure 40       NTR = 0.92,   Ground-Plane Height 6.85" 
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Figure 41       NTR = 0.92,   Ground-Plane Height 9.14" 

Figure 42       NTR = 0.92,   Ground-Plane Height 11.42" 
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Figure 43       NTR = 0.92,   Ground-Plane Height 17.13" 
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III.     NTR = 0.92 NO WALLS STRUTS 

Figure 44       NTR = 0.92,   Ground-Plane Height 1.14" 
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Figure 45       NTR = 0.92,   Ground-Plane Height 2.28" 

Figure 46       NTR = 0.92,   Ground-Plane Height 4.57" 

53 



Figure 48       NTR = 0.92,   Ground-Plane Height 9.14" 
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Figure 49       NTR = 0.92,   Ground-Plane Height 11.42" 

Figure 50       NTR = 0.92,   Ground-Plane Height 17.13" 
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IV.      NTR = 1.5 NO WALLS NO STRUTS 

Figure 51       NTR =1.5,     Ground-Plane Height 1.14" 
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Figure 52       NTR = 1.5,     Ground-Plane Height 2.28" 
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Figure 53       NTR = 1.5,     Ground-Plane Height 4.57" 
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Figure 54       NTR = 1.5,     Ground-Plane Height 6.85" 

Figure 55       NTR = 1.5,     Ground-Plane Height 9.14" 
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Figure 56       NTR =1.5,     Ground-Plane Height 11.42" 

Figure 57       NTR =1.5,     Ground-Plane Height 17.13" 
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NTR=1.5 WALLS STRUTS 

Figure 58       NTR =1.5,     Ground-Plane Height 1.14" 
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Figure 59       NTR = 1.5,     Ground-Plane Height 2.28" 

Figure 60       NTR = 1.5,     Ground-Plane Height 4.57" 
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Figure 61       NTR = 1.5,     Ground-Plane Height 6.85" 

Figure 62       NTR = 1.5,     Ground-Plane Height 9.14" 
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Figure 63       NTR = 1.5,     Ground-Plane Height 11.42" 
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VI.      NTR = 1.5 NO WALLS STRUTS 
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Figure 64       NTR = 1.5,     Ground-Plane Height 4.57" 
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Figure 65       NTR = 1.5,     Ground-Plane Height 6.85' 

Figure 66       NTR =1.5,     Ground-Plane Height 9.14" 
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Figure 67       NTR = 1.5,     Ground-Plane Height 11.42" 

Figure 68       NTR = 1.5,     Ground-Plane Height 17.13" 
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Vn.    NTR = 4.9 NO WALLS NO STRUTS 

Figure 69       NTR = 4.9,     Ground-Plane Height 1.14" 
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Figure 70       NTR = 4.9,     Ground-Plane Height 2.28" 

Figure 71       NTR = 4.9,     Ground-Plane Height 4.57" 
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Figure 72       NTR = 4.9,     Ground-Plane Height 6.85" 

Figure 73       NTR = 4.9,     Ground-Plane Height 9.14" 
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Figure 74       NTR = 4.9,     Ground-Plane Height 11.42" 

Figure 75       NTR = 4.9,     Ground-Plane Height 17.13" 
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MIL   NTR = 4.9 WALLS STRUTS 

Figure 76       NTR = 4.9,     Ground-Plane Height 2.28" 
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Figure 77       NTR = 4,9,     Ground-Plane Height 4.57" 

Figure 78       NTR = 4.9,     Ground-Plane Height 6.85" 
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IX.     NTR = 4.9 NO WALLS STRUTS 

Figure 79       NTR = 4.9,     Ground-Plane Height 1.14" 
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Figure 80       NTR = 4.9,     Ground-Plane Height 2.28" 

Figure 81       NTR = 4.9,     Ground-Plane Height 6.85" 
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Figure 82 NTR = 4.9,     Ground-Plane Height 9.14" 
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Figure 83       NTR = 4.9,     Ground-Plane Height 11.42" 
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